首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9959篇
  免费   1709篇
  国内免费   1999篇
化学   7721篇
晶体学   119篇
力学   604篇
综合类   149篇
数学   1315篇
物理学   3759篇
  2024年   6篇
  2023年   231篇
  2022年   299篇
  2021年   363篇
  2020年   483篇
  2019年   467篇
  2018年   366篇
  2017年   401篇
  2016年   553篇
  2015年   556篇
  2014年   597篇
  2013年   831篇
  2012年   772篇
  2011年   874篇
  2010年   657篇
  2009年   615篇
  2008年   706篇
  2007年   583篇
  2006年   546篇
  2005年   507篇
  2004年   416篇
  2003年   347篇
  2002年   384篇
  2001年   310篇
  2000年   271篇
  1999年   229篇
  1998年   178篇
  1997年   128篇
  1996年   149篇
  1995年   112篇
  1994年   132篇
  1993年   99篇
  1992年   73篇
  1991年   94篇
  1990年   89篇
  1989年   42篇
  1988年   39篇
  1987年   29篇
  1986年   34篇
  1985年   37篇
  1984年   15篇
  1983年   18篇
  1982年   8篇
  1981年   7篇
  1980年   4篇
  1979年   2篇
  1971年   1篇
  1957年   3篇
  1936年   4篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
81.
Poly(1,2-dithiolane)s are a family of intrinsically recyclable polymers due to their dynamic covalent disulfide linkages. Despite the common use of thiolate-initiated anionic ring-opening polymerization (ROP) under basic condition, cationic ROP is still not exploited. Here we report that disulfide bond can act as a proton acceptor, being protonated by acids to form sulfonium cations, which can efficiently initiate the ROP of 1,2-dithiolanes and result in high-molecular-weight (over 1000 kDa) poly(disulfide)s. The reaction can be triggered by adding catalytic amounts of acids and non-coordinating anion salts, and completed in few minutes at room temperature. The acidic conditions allow the applicability for acidic monomers. Importantly, the reaction condition can be under open air without inert protection, enabling the nearly quantitative chemical recycling from bulk materials to original monomers.  相似文献   
82.
Rechargeable zinc metal batteries are promising for large-scale energy storage. However, their practical application is limited by harsh issues such as uncontrollable dendrite growth, low Coulombic efficiency, and poor temperature tolerance. Herein, a unique design strategy using γ-valerolactone-based electrolyte and nanocarbon-coated aluminum substrate was reported to solve the above problems. The electrolyte with extremely low freezing point and high thermal stability enables the symmetric cells with long cycle life over a wide temperature range (−50 °C to 80 °C) due to its ability to regulate zinc nucleation and preferential epitaxial growth. Besides, the nanocarbon-coated aluminum substrate can also promote a higher Coulombic efficiency over a wide temperature range in contrast to the low Coulombic efficiency of copper substrates with significant irreversible alloying reactions because this unique substrate with excellent chemical stabilization can homogenize the interfacial electron/ion distribution. The optimized zinc metal capacitors can operate stably under various temperature conditions (2000 cycles at 30 °C with 66 % depth of discharge and 1200 cycles at 80 °C with 50 % depth of discharge). This unique electrolyte and substrate design strategy achieves a robust zinc metal battery over a wide temperature range.  相似文献   
83.
X-ray imaging technology has achieved important applications in many fields and has attracted extensive attentions. Dynamic X-ray flexible imaging for the real-time observation of the internal structure of complex materials is the most challenging type of X-ray imaging technology, which requires high-performance X-ray scintillators with high X-ray excited luminescence (XEL) efficiency as well as excellent processibility and stability. Here, a macrocyclic bridging ligand with aggregation-induced emission (AIE) feature was introduced for constructing a copper iodide cluster-based metal–organic framework (MOF) scintillator. This strategy endows the scintillator with high XEL efficiency and excellent chemical stability. Moreover, a regular rod-like microcrystal was prepared through the addition of polyvinyl pyrrolidone during the in situ synthesis process, which further enhanced the XEL and processibility of the scintillator. The microcrystal was used for the preparation of a scintillator screen with excellent flexibility and stability, which can be used for high-performance X-ray imaging in extremely humid environments. Furthermore, dynamic X-ray flexible imaging was realized for the first time. The internal structure of flexible objects was observed in real time with an ultrahigh resolution of 20 LP mm−1.  相似文献   
84.
Harnessing the potential of thermally activated delayed fluorescence (TADF) and room temperature phosphorescence (RTP) is crucial for developing light-emitting diodes (LEDs), lasers, sensors, and many others. However, effective strategies in this domain are still relatively scarce. This study presents a new approach to achieving highly efficient deep-blue TADF (with a PLQY of 25 %) and low-energy orange RTP (with a PLQY of 90 %) through the fabrication of lead-free hybrid halides. This new class of monomeric and dimeric 0D antimony halides can be facilely synthesized using a bottom-up solution process, requiring only a few seconds to minutes, which offer exceptional stability and nontoxicity. By leveraging the highly adaptable molecular arrangement and crystal packing modes, the hybrid antimony halides demonstrate the ability to self-assemble into regular 1D microrod and 2D microplate morphologies. This self-assembly is facilitated by multiple non-covalent interactions between the inorganic cores and organic shells. Notably, these microstructures exhibit outstanding polarized luminescence and function as low-dimensional optical waveguides with remarkably low optical-loss coefficients. Therefore, this work not only presents a pioneering demonstration of deep-blue TADF in hybrid antimony halides, but also introduces 1D and 2D micro/nanostructures that hold promising potential for applications in white LEDs and low-dimensional photonic systems.  相似文献   
85.
Eco-friendly lead-free organic–inorganic manganese halides (OIMHs) have attracted considerable attention in various optoelectronic applications because of their superior optical properties and flexible solution processibility. Herein, we report a novel pseudo-2D layered OIMH (MTP)2MnBr4 (MTP: methyltriphenylphosphonium), which exhibits intense green emission under UV/blue or X-ray excitation, with a near-unity photoluminescence quantum yield, high resistance to thermal quenching (I150 °C=84.1 %) and good photochemical stability. These features enable (MTP)2MnBr4 as an efficient green phosphor for blue-converted white light-emitting diodes, demonstrating a commercial-level luminous efficiency of 101 lm W−1 and a wide color gamut of 116 % NTSC. Moreover, these (MTP)2MnBr4 crystals showcase outstanding X-ray scintillation properties, delivering a light yield of 67000 photon MeV−1, a detection limit of 82.4 nGy s−1, and a competitive spatial resolution of 6.2 lp mm−1 for X-ray imaging. This work presents a new avenue for the exploration of eco-friendly luminescent OIMHs towards multifunctional light-emitting applications.  相似文献   
86.
Constructing a powerful photocatalytic system that can achieve the carbon dioxide (CO2) reduction half-reaction and the water (H2O) oxidation half-reaction simultaneously is a very challenging but meaningful task. Herein, a porous material with a crystalline topological network, named viCOF-bpy-Re, was rationally synthesized by incorporating rhenium complexes as reductive sites and triazine ring structures as oxidative sites via robust −C=C− bond linkages. The charge-separation ability of viCOF-bpy-Re is promoted by low polarized π-bridges between rhenium complexes and triazine ring units, and the efficient charge-separation enables the photogenerated electron–hole pairs, followed by an intramolecular charge-transfer process, to form photogenerated electrons involved in CO2 reduction and photogenerated holes that participate in H2O oxidation simultaneously. The viCOF-bpy-Re shows the highest catalytic photocatalytic carbon monoxide (CO) production rate (190.6 μmol g−1 h−1 with about 100 % selectivity) and oxygen (O2) evolution (90.2 μmol g−1 h−1) among all the porous catalysts in CO2 reduction with H2O as sacrificial agents. Therefore, a powerful photocatalytic system was successfully achieved, and this catalytic system exhibited excellent stability in the catalysis process for 50 hours. The structure–function relationship was confirmed by femtosecond transient absorption spectroscopy and density functional theory calculations.  相似文献   
87.
Precisely introducing two similar functional groups into bulk chemical alkenes represents a formidable route to complex molecules. Especially, the selective activation of two electrophiles is in crucial demand, yet challenging for cross-electrophile-coupling. Herein, we demonstrate a redox-mediated electrolysis, in which aryl nitriles are both aryl radical precursors and redox-mediators, enables an intermolecular alkene 1,2-diarylation with a remarkable regioselectivity, thereby avoiding the involvement of transition-metal catalysts. This transformation utilizes cyanoarene radical anions for activating various aryl halides (including iodides, bromides, and even chlorides) and affords 1,2-diarylation adducts in up to 83 % yield and >20 : 1 regioselectivity with more than 80 examples, providing a feasible approach to complex bibenzyl derivatives.  相似文献   
88.
Designing highly efficient and stable electrode-electrolyte interface for hydrogen peroxide (H2O2) electrosynthesis remains challenging. Inhibiting the competitive side reaction, 4 e oxygen reduction to H2O, is essential for highly selective H2O2 electrosynthesis. Instead of hindering excessive hydrogenation of H2O2 via catalyst modification, we discover that adding a hydrogen-bond acceptor, dimethyl sulfoxide (DMSO), to the KOH electrolyte enables simultaneous improvement of the selectivity and activity of H2O2 electrosynthesis. Spectral characterization and molecular simulation confirm that the formation of hydrogen bonds between DMSO and water molecules at the electrode-electrolyte interface can reduce the activity of water dissociation into active H* species. The suitable H* supply environment hinders excessive hydrogenation of the oxygen reduction reaction (ORR), thus improving the selectivity of 2 e ORR and achieving over 90 % selectivity of H2O2. This work highlights the importance of regulating the interfacial hydrogen-bond environment by organic molecules as a means of boosting electrochemical performance in aqueous electrosynthesis and beyond.  相似文献   
89.
Chiral induction has been an important topic in chemistry, not only for its relevance in understanding the mysterious phenomenon of spontaneous symmetry breaking in nature but also due to its critical implications in medicine and the chiral industry. The induced chirality of fullerenes by host–guest interactions has been rarely reported, mainly attributed to their chiral resistance from high symmetry and challenges in their accessibility. Herein, we report two new pairs of chiral porous aromatic cages (PAC), R- PAC-2 , S- PAC-2 (with Br substituents) and R- PAC-3 , S- PAC-3 (with CH3 substituents) enantiomers. PAC-2 , rather than PAC-3 , achieves fullerene encapsulation and selective binding of C70 over C60 in fullerene carbon soot. More significantly, the occurrence of chiral induction between R- PAC-2 , S- PAC-2 and fullerenes is confirmed by single-crystal X-ray diffraction and the intense CD signal within the absorption region of fullerenes. DFT calculations reveal the contribution of electrostatic effects originating from face-to-face arene-fullerene interactions dominate C70 selectivity and elucidate the substituent effect on fullerene encapsulation. The disturbance from the differential interactions between fullerene and surrounding chiral cages on the intrinsic highly symmetric electronic structure of fullerene could be the primary reason accounting for the induced chirality of fullerene.  相似文献   
90.
It is still challenging to design and develop the state-of-the-art photocatalysts toward CO2 photoreduction. Enormous researchers have focused on the halide perovskites in the photocatalytic field for CO2 photoreduction, due to their excellent optical and physical properties. The toxicity of lead-based halide perovskites prevents their large-scale applications in photocatalytic fields. In consequence, lead-free halide perovskites (LFHPs) without the toxicity become the promising alternatives in the photocatalytic application for CO2 photoreduction. In recent years, the rapid advances of LFHPs have offer new chances for the photocatalytic CO2 reduction of LFHPs. In this review, we summarize not only the structures and properties of A2BX6, A2B(I)B(III)X6, and A3B2X9-type LFHPs but also their recent progresses on the photocatalytic CO2 reduction. Furthermore, we also point out the opportunities and perspectives to research LFHPs photocatalysts for CO2 photoreduction in the future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号